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Toiler's group-theoretical analysis of kinematics is exploited to define a complete set
of variables, each of independent range, for particle production of arbitrary multiplici-
ty. In terms of these variables, the generalized Regge-pole hypothesis leads to a sim-
ple, unambiguous, and experimentally accessible prediction for high-energy multiple-
production cross section. A flat Pomeranchuk trajectory is shown to violate the Frois-
sart bound.

A variety of multiperipheral models for in-
elastic reactions at high energy has been dis-
cussed in the literature, ' ' but the implement-
ing variables have been incomplete or imper-
fectly matched to the factorizability which char-
acterizes such models. In this paper we ex-
ploit the work of Toiler' to define a complete
set of variables for particle production of ar-
bitrary multiplicity, the range of each variable
being independent of the others. The new vari-
able set is natural for the implementation of
any multiperipheral model, leading to a phase
space that factors asymptotically in the same
manner as does the amplitude. We apply our
variables to the (unique) generalization of the

Regge-pole hypothesis, achieving a simple,
unambiguous, and experimentally accessible
prediction for multiple-production cross sec-
tions at high energy which maintains the fac-
torization property. One important aspect of
the result is the exclusion of the possibility
of a flat Pomeranchuk trajectory.

For the N-particle production reaction a+9
—1+2+ . ~ ~ +N, we begin by selecting a partic-
ular ordering of final particles so as to define
a set of N —l momentum transfers Q~„accord-
ing to the diagram of Fig. 1. Each different
ordering leads to a different set of variables;
any of these sets is complete, the choice be-
tween them being a matter of convenience usu-
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FIG. 1. Diagram defining the momentum transfers Q~~, ,

ally resolved by appeal to the multiperipheral
concept. That is to say, for describing a par-
ticular region of final-particle momenta, one
generally chooses that set of variables for which
all Qm~2 in this region are small, while all
sm„= (pm+p~)' are large.

The number of variables needed to describe
an amplitude with a total of N+ 2 ingoing and

outgoing particles is well known to be 3N-4,
once Lorentz invariance is included. We divide
the total variable set into three categories,
a set of N 1 t va—.riables, a, set of N 1$ vari--
ables, and a set of N-2 co variables. This choice
is motivated in detail by Bali, Chew, and Pig-
notti' on the basis of Toiler's group-theoret-
ical analysis. ' The t variables are obvious:
tm„=Qm„'. Less obvious but still recogniz-
able are the $m, which are also in one-to-one
correspondence with the Q „, i) „being the

analytic continuation of the angle in the rest
system of Qm„between the direction of Pm
and that of p . In the region of interest here
the Qm„are spacelike (the tm„are negative),
and Toiler has shown that each ( is real,
ranging from 0 to ~ independently of the oth-
er variables.

The ~n are the least familiar components
of our variable set. The members of this sub-
set are in one-to-one correspondence with the
internal vertices of Fig. 1. To understand ~n,
go into the rest frame of pz, where the spatial
components of the two adjacent momentum trans-
fers point in the same direction. Then consid-
er the rigid rotation about this axis of all mo-
menta standing on the left of the vertex n and
the independent rigid rotation of all momenta
standing on the right. The difference of these
two-rotation angles is ~n, which thus has a
range 0 to 27t.

In Ref. 9 it is shown explicitly how to pass
by a succession of Lorentz transformations
from the variables tm„, $m~, &u~ to the ordi-
nary momentum variables or to the channel
invariants sm„= (pm+p„)' and s = (p~+pt, )'.
In the interest of brevity we confine ourselves
here to the observation that s n is a linear
function of coshgm~, with coefficients that de-
pend only on the t's adjacent to the m and n
vertices:

s = [& "'X "'/2( t)]cosh) +-function of t's,
ynn m n 'mn %1n

with A
= &(m„', t„ 1 „,t„„+1) (for the end vertices, one of the t's should be replaced by m ' or m&'),

where

A(t. , t. , t„)=t.'+1„'+t ' —2t.t.-2t.t -2t.t .
z' j'k i j k ij ik jk'

Thus a large value of $ „, with adjacent t's small, implies a large value of s. It turns out that s
depends on all 3N —4 variables, but when all the cosh( are large,

y &~2~ N-1
s - „. ..cosh] cosh)

3
~ ~ ~ cosh/

1
II (cos&u. + cosq. ),

1 N

12 N 1,N- N 1,N.

(2)

(3)

where

m '-t
n n-l, n n, n+1

n 2(-t )"'(-t )'" '

n-l, n n, n+ 1
(4)

The 3N-4 dimensional phase space

dC =dp b(p ' —m )dp 'b(p '-m '). ..dp (p ' —m ')54(p +p + ~ ~ ~ +p p-p ), —
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in terms of the new variables becomes

1/2y I/2 ~ ~ ~ y 1/2
1 2 Nd4 dt dt dt

N 2 2 3N 12 23 N 1, N—

5(cosh7I —p p /m m )
&&d cosh/ d cosh/ d cosh) d&u dv d~ d(

sinhg
(5)

the angle tt describing rigid rotations of the entire final set of N momenta about the common direc-
tion of p and P& in a frame where these initial momenta are parallel. Evidently the spin-averaged
matrix element will not depend on g, but it will in general depend on all the other variables appear-
ing in formula (5). For a target at rest, cosh' is the energy of the incident particle in units of its
own rest mass. In terms of s,

cosh' =
S -Bt -Pl,2 2

a b

2m m
a b

2mm'
a b

The single constraint interlocking our variables arises through the delta function in cosh'. It fol-
lows, however, from formula (3) that when all the cosh' „are large,

cosh'- (factorizable function of t and &u ) cosh(h +$ + ~ ~ ~ $ ),tnt n
(3')

so that for a fixed set of t's and w's the constraint is only on the sum of the ('s. It is typical of mul-
tiperipheral models that when q is large, most of the production occurs in regions where every $~z
is large. Thus the approximation (3') can be used to simplify the phase space:

factorizable function of t's and ~'s
+ +' ~ ~ +"N sinhg 12 23 N 1N-

&&dt dt d$ d$ . d$ d(u d(u ~ ~ d(u d(, (6)

where, from formula (3),

(.)cosh) = s „»~, ' 2 P (cosa&. + cosq. )l=2 l l

%e are now in a position to write down a cross-section formula. Suppose, for example, that the
Regge-pole hypothesis is adopted for the absolute square of the amplitude, summed over final spins
and averaged over initial spins' '&':

{I&(t,k, ~ ) I ) -f (tl )f (tl, ~, t ) ~ ~ fN(t )(cosh( )
" " (cosh) ) 3 '~ ~ ~ ~ . (8)

The internal "vertex functions" f„describe the coupling of two Regge trajectories to a physical par-
ticle, while f, and fN couple two physical particles to a single Regge trajectory. Taken together with
formula (6) and the flux factor, and integrating over d|t, the behavior (8) leads to

N-2

x expf2n (t )$ 1 ~ ~ ~ dt dt ~ ~ ~ d$ d$ ~ ~ ~ dc@ ~ ~ ~ cu l$ + $ + ~ ~ ~ -$ I, ( )

a result containing a wealth of physically interesting predictions, especially if one exploits the cor-
relations between different reactions flowing from the universality of the vertex functions E~. (The
function fz differs from Fn only by a factor that depends in a known manner on tz 1 z, t~ ~+1, and
&n. )
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We make no attempt here to exhaust the content of formula (9), but three of the most obvious fea-
tures are:

(a) Consider a reaction in which all leading trajectories are the Pomeranchuk and suppose this
trajectory to be perfectly flat (a fixed pole) at n = 1. Then

s dv - II E.e dt dt
3

~ ~ dg d(23 ~ ~ d~2 ~ ~ d~& 1 [$12+$23 -$ ],
g=l

or, integrating over the dg's and remembering (l),
N-2

dv - (function of t's and &u's)(lns) dtl dt dt du2' '

The limits on the t and (d intervals become independent of 8 for large s; so there is a conflict with
the Froissart limit'0 for N) 4, showing that peak shrinkage, such as that associated with a moving
pole, is essential to the consistency of the model.

(b) Assuming all poles to move, if formula (9) is integrated over the dg's, we find that

II.&. exp[2n (+]
2 Zs dQ

12 23 12 34 12 N 1,N-
exp [2n ( '] exp[2n ( +']

+ ~ ~ ~ ~ ~ ~ dR dpi ~ ~ ~
~

23 12 23 34 1,N 12—

The energy dependence of this differential cross section is

2[n a„-1]

where O. max is the highest trajectory in the chain. Such a dependence was conjectured by Zacharia-
sen and Zweig. '

(c) For processes in which one trajectory in the chain lies well below the others, the differential
final-particle spectrum will favor low subenergies for the particle pair corresponding to the low-ly-
ing trajectory. That is to say, even at a fixed incident energy it is possible to investigate the char-
acteristic Regge structure by studying ratios of final subenergies. The logarithmic distribution in
the ratio of two subenergies, keeping all other ratios fixed, is predicted by formula (9) to be a straight
line whose slope is determined by the difference of the corresponding trajectory heights. In p»tic-
ular, for N=3 after integrating over d~»

d(z -(function of t's) s " " " '* (s is )
" " " "dt„dt„din(s„/s„).n (t +n (t )-2 n t -n (t ) (13)

A concluding remark is that clusters of final particles with low total mass can replace any or all
of the single outgoing particles in Fig. 1, so long as the experimenter sums over degrees of freedom
within a given cluster —except for the cluster mass m~. The general problem is analyzed in detail
in Ref. 9. It turns out that all formulas given in this paper continue to hold, with single-particle
masses replaced by cluster masses.

Questions involving total cross sections and the over all multiplic-ity of production require integra-
tion over the dt's and d~'s as well as a summation over final-particle combinations. These matters
will be considered in another paper.
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Recently, following a suggestion by Fubini
and Furlan, ' infinite-momentum limits of weak
and electromagnetic currents between one-par-
ticle states have attracted much attention.
The mathematical properties of these limits
have been investigated by Coester and Roep-
storff. ' According to these authors, the assump-
tion that one-particle matrix elements of cur-
rent algebras are saturated by one-particle
intermediate states at infinite momentum, a
suggestion particularly advocated by Dashen
and Gell-Mann, ' is incompatible with Lorentz
invariance unless an infinite sequence of res-
onances with arbitrarily high spin values is
involved. We wish to show that if such an in-
finite sequence of Regge-like recurrences is
taken into account, there do indeed exist non-
trivial solutions which are compatible with
Lorentz invariance.

Matrix elements at infinite momentum. —We
start with the following simple remark. Let
E~(x) be a vector or axial-vector current and

consider the matrix element

L = lim (P ',
¹ (E (0) iP N),

K K

where p~' and p~ denote the four-momenta of
the one-particle states of mass m' and m, re-
spectivelyy,

p ' = (~ ', p'+ wa); p = (u, p+ za).
K K K K

Here a is a unit vector pointing in the z direc-
tion. The symbols N' and N denote the rernain-
ing quantum numbers like spin and charge.
The states ~p, N) are obtained from states at
rest by means of a pure Lorentz transforma-
tion

iP, N) = U[L, (P)] lm, N)(mi~)'",

where L(p) is the transformation that takes
the vector m~ =(m, 0, 0, 0) to the vector p&.
This allows one to express the limit 1.~ as
a matrix element between states at rest:

L = lim, (m', N'IU[L (p ')L(p )]L (p )E (0) ImN).
(d (d K K V K

K~00 K K

The product L '(p„')L(p~) has a finite limit,
and furthermore,

The complex number q stands for q =q'+ig',
where q' and q' are the components of the mo-
mentum transfer q =p'-p in the x-y plane. We
represent the matrix E as a product

where aj" and a~ denote the two lightlige vec-
tors a&=(1,a) and a&=(1, -a). The limit of
the product L '(p ')L(p ) may be expressed
in terms of the 2x2 representation of the ho-
mogeneous Lorentz group as follows.'

m' 0
Z = iimL-'(P ')L(P ) =(m'm)-"'

Z =L '(v')qL(n)-

where the matrices L(m'), L(v) represent pure
Lorentz transformations in the z direction that
take the vectors m ', m to v', v, respectively,

v =(2m, ) [m, +m, (m, -m )a];
1 2 2 2 2

~'=(2m ) [m +m', (m -m' )a].
-1 2 .2 2 2-

(4)
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